

TPAWS RADAR — The Next "STEP" "SYSTEM TECHNOLOGY EVALUATION PROGRAM"

Presented by
Dr. Roland L. Bowles
AeroTech Research (USA), Inc.
June 3, 2004

Outline

- **# TPAWS Turbulence RADAR Where are we?**
 - NASA B757 FY-02 FLIGHT TEST SYSTEM CONFIGURATION
 - STATE OF TECHNOLOGY READINESS/FEASIBILITY BASED ON FLIGHT TEST RESULTS
- **The Next "STEP"- In Service Evaluation** Via The Delta Connection

Summary Remarks

TPAWS End-to-End System Concept

FY-02 Flight Campaign Summary

FY-02 B757 TPAWS Flight Experiment Data Summary

15 flights total: 10 flights encountering significant events

Correlation of Peak Load with Peak RMS Load [5 sec. Window]

Based on Measurements for 102 Turbulence Encounter Cases

ESTIMATED FROM RADAR OBSERVABLES FOR TPAWS CONCEPT

R232-10 is a "Show-Case" Event

PREVAILING OPERATIONAL SITUATION

- # IMC see and avoid convection not a reliable option.
- **★** Low reflectivity convection in area with localized embedded severe turbulence.
- Conventional "ships" radar-display painting black & green.
- **★ Low reflectivity environment precluded identification of** "escape path" prior to encounter.

QUESTION: Where is the turbulence relative to flight path, and is it hazardous?

ANSWER: TPAWS TECHNOLOGY! Exactly the tactical scenario for which the TPAWS design is expected to provide operational safety benefits.

AEROTECH RESEARCH (U.S.A.), INC.

Visible Satellite Imagery

19:12 UTC Huntsville Composite Radar Reflectivity with R232 Flight Path

Flight Level Radar Scan From Huntsville Nexrad With Flight Path & PIREPS

Aircraft C.G. Loads

AEROTECH RESEARCH (U.S.A.), INC.

Time Based Radar Position Prior to In Situ Hazard Threshold Exceedence

EACH HAZRD DISPLAY IMAGE BASED ON 3 ELEVATION SCANS 0,-2,-4 deg.

Sequence #1 Hazard Plots

Range limited to 19.2km (10.4 nmi) by radar experimental configuration (128 range gates)

Sequence #1 Reflectivity Plots

84 seconds to go

Sequence #2 Hazard Plots

Sequence #2 Reflectivity Plots

60 seconds to go

Sequence #3 Hazard Plots

TPAWS Performance Summary

55 Cases FY-02 Flight Experiment

	<i>Radar</i> ≥ .2 g's	
	Correct Alerts	Missed Alerts
≥ .2 g's	POD = 80.95 %	19.047 %
In Situ	Nuisance Alerts	Correct Nulls
< .2 g's	10.53%	69.23%

Overall % correct radar detection's = 78.18 %

Summary Conclusions

- Successful detection of hazardous turbulence convincingly demonstrated.
- ➡ NESPA detection performance in low reflectivity conditions considered good.
- ♯ Overall system performance exceeds current FAA minimum performance standards.
- Radar system performance for FY-02 flight test demonstrates feasibility of TPAWS technology.

"STEP" Initiative - NASA/ATR Task

In Concert With <u>Delta Air Lines</u>, <u>Rockwell Collins</u>, and <u>Honeywell</u>, Explore Feasibility of Conducting an In-Service TPAWS Radar Operational Demonstration & Systems Technology Evaluation Program

Key Factors Considered

- **# SYSTEM PERFORMANCE REQUIREMENTS**
- **#** COCKPIT INTERFACE / CREW PROCEDURES
- **# TECHNOLOGY READINESS**
- **# AIRCRAFT PLATFORM SELECTION**
- **#** CERTIFICATION (STC'S & TSO'S)
- # COST
- # SCHEDULE
- **# ROLES & RESPONSIBILITIES**

"STEP" Benefits for NASA

A Clear, Unprecedented, and High Visibility Path for NASA to Successfully Complete Remaining WxAP / TPAWS Milestones and Program Goals

WxAP Goal:

Develop enabling technologies to reduce Wx- related accident causal factors by 25-50% and turbulence - related injuries by 25-50% by year 2007.

Level 2 Milestone:

Evaluation and selected validation of airborne radar turbulence prediction & warning technologies for transport category aircraft in a relevant (Wx & operational) flight environment.

- Retro-fit
- Forward-fit

TSO Compliant Certification

Delta Selected Aircraft "STEP" Platform

B-737-800 NG

Selection Criteria:

- General Availability
- Scheduled Maintenance Down Time
- ♯ Route Structure
- Turbulence Encounter History
- **♯** Continental & Maritime Wx
- **Avionics Configuration**
- **♯** Other Factors

Selection of RADAR Manufacturer

Both Honeywell and Rockwell Collins invited by NASA, ATR, and Delta to prepare proposals in support of the "STEP" initiative

Process:

- **#** Multi-tiered evaluation procedure defined.

Key Selection Criteria:

- **Technical content & understanding of program objectives & challenges.**
- **#** Compatibility with delta selected aircraft platform.
- Cost & schedule.
- ★ Other significant factors.

Rockwell Collins selected based on overall technical merit and team judgment as to best aircraft- radar combination

TPAWS RADAR – "STEP" Configuration

" <u>SYSTEM TECHNOLOGY EVALUATION PROGRAM</u>"

ROCKWELL COLLINS Radar System

Delta provided B737-800 NG aircraft

E - TURB MODE CERTIFIED NON- INTERFERENCE WITH CURRENT WX-MODES / COCKPIT PROCEDURES

RADAR "STEP" - Key Features

- Insertion of new highly automated WXR-2100 multi scan transceiver technology provides improved performance with STC for B737-800 operation.
- ★ Advanced 2nd moment detection algorithm provides performance equivalent to that successfully demonstrated / evaluated in NASA flight experiments.
- ➡ Direct transfer of NASA hazard prediction algorithm technology & related hazard tables tailored for B-737-800 operation. Aircraft weight will be interfaced to radar system to support g- load prediction based on radar observable.
- # E-TURB mode provides advisory information via fully integrated two level situation display based on thresholds of turbulence safety hazard metric, RMS g load.*
- # End to end system TSO certified.

* <u>KEY FINDING:</u> Delta & radar manufacturers require 25-40 nmi. system performance with advisory/ situation display of predicted loads in deference to short range (5-10nmi.) high resolution caution alerts with defined cockpit interference effects.

AEROTECH RESEARCH (U.S.A.), INC.

System Implementation Concept

25

AEROTECH RESEARCH (U.S.A.), INC.

Functional Organization Chart RADAR "STEP" Project

- Programmatic oversight
- Funding source
- Participate in evaluation process

<u>NASA</u>

- Project management & oversight
- Develop & provide hazard tables
- Develop & provide pulse volume compensation table
- Fight data analysis
- Participate in evaluation process

AeroTech

- Provide & install radar system
- Acquire all STC/TSO approvals
- Radar engineering & system development
- Functions as systems integrator
- Participate in evaluation process

Rockwell

- Provide aircraft platform & crews
- Engineering & maintenance support for radar installation
- Support STC/TSO process
- Provide flight data
- Participate in evaluation process

Delta

Target Schedule

Key Milestones/ Accomplishments to Date

- Program Start	Dec. /03
- Program Start	Dec. /0

- <u>Preliminary</u> Design Review Mar. /04

- B737-800 Hazard & Pulse Volume Mar. /04

Compensation Tables Delivered *

- WXR2100 RADAR /STC Approval Mar. /04

- "Ship-Set" R/T& Antenna Installed ** Late Mar./04

- Rockwell Sabreliner Flight Test Apr. 04

- Final Design Review Jun. /04

- TSO Certification Approval July /04

- Evaluation R/T Installed / B737-800 ** July /04

- In- Service Operational Evaluation Aug. /04 – Aug. /05

AEROTECH RESEARCH (U.S.A.), INC.

- Final Report Delivered To NASA Sept. /05

^{*} ATR - Rockwell Coordination ** Rockwell - Delta Coordination

Summary Remarks

- # "STEP" is the right program, at the right time, conducted with the right partners.
- ♯ Well thought out plan.
- NASA funding leveraged by substantial in-kind cost sharing by industry partners.
- ➡ Program enjoys high visibility with potential for real safety benefits.
- Unprecedented degree of NASA technology transfer.

